9 research outputs found

    Reliability Analysis of Correlated Competitive and Dependent Components Considering Random Isolation Times

    Get PDF
    Funding Information: Funding Statement: This work was supported by the National Natural Science Foundation of China (NSFC) (Grant No. 62172058) and the Hunan Provincial Natural Science Foundation of China (Grant Nos. 2022JJ10052, 2022JJ30624). Publisher Copyright: © 2023 Tech Science Press. All rights reserved.Peer reviewedPublisher PD

    A Novel Single-Loop Mechanism and the Associated Cylindrical Deployable Mechanisms

    No full text
    This paper presents a new type of 2-DOF single-loop mechanism inspired by the Sarrus mechanism, and it utilizes this mechanism to construct 2-DOF cylindrical deployable mechanisms. First, the motion pattern of the single-loop mechanism is analyzed utilizing screw theory. According to the structural symmetries, the cylindrical deployable mechanisms are constructed through the linear pattern combination and circular pattern combination of the single-loop mechanisms. After the geometrical analysis and interference condition analysis, the axial, circumferential and area magnification ratios are defined and, furthermore, applied to the parameter optimization of the deployable mechanisms, forming an example surface. Finally, a simplified 1-DOF single-loop mechanism is derived from the proposed 2-DOF mechanism, which is used to construct 1-DOF cylindrical deployable mechanisms with singular free workspaces

    Equilibrium Conformation of a Novel Cable-Driven Snake-Arm Robot under External Loads

    No full text
    Based on the anti-parallelogram mechanism, an approximate cylindrical rolling joint is proposed to develop a novel cable-driven snake-arm robot with multiple degrees of freedom (DOF). Furthermore, the kinematics of the cable-driven snake-arm robot are established, and the mapping between actuator space and joint space is simplified by bending decoupling motion in the multiple segments. The workspace and bending configurations of the robot are obtained. The static model is established by the principle of minimum potential energy. Furthermore, the simplified cable constraints in the static model are proposed through Taylor expansion, which facilitates the equilibrium conformation analysis of the robot under different external forces. The cable-driven snake-arm robot prototype is developed to verify the feasibility of the robot design and the availability of the static model through the experiments of the free bending motion and the external load on the robot

    Design and Analysis of a Tendon-driven Snake-arm Robot Based on Spherical Magnet

    No full text
    The tendon-driven snake-arm robot can achieve multiple degrees of freedom (DOF) bending motion with a compact structure, which enables the robot to be widely applied in confined environments. However, if a conventional tendon-driven snake-arm robot is subject to a lateral force on the distal end, it will experience passive compliance. In this paper, a 2-DOF rolling joint is proposed based on the opposite-pole attraction of spherical magnets, which has a relatively simple structure than traditional joints. By serial connecting the 2-DOF rolling joints, a novel snake-arm robot is designed utilizing a tendon-driven approach. The kinematic model and workspace of the snake-arm robot are obtained, and the bending motion is validated. Based on the kinematic model, it is theoretically proved that the proposed robot can avoid passive compliance. In addition, this feature is verified through load experiments on the developed prototype.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Multi-objective optimization design of a heavy-duty folding mechanism and Self-discharging equipment development

    No full text
    In this paper, we investigated the technical problem of the recovery of overlength and heavy load conveying booms of self-unloading ships. A method of folding the conveying boom with a hydraulic-four-bar mechanism is presented, and by using a mathematical model for the optimization of folding velocity stationary with ADAMS software, the optimization data and results were obtained. The multi-objective optimization index is introduced, and the multi-objective optimization problem is discussed. The results of the multi-objective optimization showed that parameters such as angular velocity and the change of angular acceleration of the conveyor boom were optimized. The paper has manufactured the connecting rod mechanism, and developed the self-discharging folding conveyance equipment. Through practical application, we determined that the developed folding conveying equipment had the advantages of smooth movement and high folding efficiency

    Multi-scale modeling and tensile failure prediction of 3D needled C/C–SiC composites considering real microstructure

    No full text
    Three-dimensional (3D) needled carbon fiber reinforced carbon and silicon carbide (C/C–SiC) composites have the significant advantages of low density, high strength, and long lifespan, which are widely used in aerospace and other industrial fields. In this paper, based on the microstructure of the composites, a multi-scale finite element model is established to predict their mechanical properties and failure behaviors under the tensile load. The multi-scale model has been validated by the static tensile test and the microstructure of fracture. With this model, the effects of the fiber volume fraction, the interfacial bonding strength, the content of residual silicon (Si) elements, and the porosity on the mechanical properties of needled C/C–SiC composites are systematically analyzed. The results show that the stress-strain curve of the composites under the longitudinal tensile load has two nearly linear segments. The final failure strength of the composites increases with the increase of the interfacial bonding strength, the fiber volume fraction and residual Si elements, while decreases with the increase of the porosity. In addition, based on the established multi-scale finite element model, the damage evolution process and failure mechanism of the needled composites are investigated in detail. The proposed scheme could effectively predict the mechanical properties of the needled C/C–SiC composites and capture the microscopic damage evolution, which would help to optimize the design of composites
    corecore